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LETTER TO THE EDITOR 

Squeezing and minimum uncertainty states in the 
supersymmetric harmonic oscillator 

M Orszag and S Salam6t 
Facultad de Fisica, Pontificia Universidad Cat6lica de Chile, Casilla 6177, Santiago 22, 
Chile 

Received 14 June 1988, in final form 12 August 1988 

Abstract. A displacement operator for a subset of the supercoherent states is found. It is 
also shown that a diagonal version of the squeezing operator reduces the fluctuations of 
one of the quadratures, but the reduction is not enough to go below the standard quantum 
noise level. New states are found, which are minimum uncertainty for the new operators 
X and P, and lead to coherence and squeezing, in the sense of equal fluctuations in the 
two quadratures and reduction in one of them, respectively. Moreover, these states are 
associated with the model of Jaynes and Cummings in the strong-coupling limit 

Coherent states have been widely used in many areas of physics such as quantum 
optics and nuclear physics [ 13. The main purpose of this letter is to construct squeezed 
states for supersymmetric systems. Although the calculations that will be presented 
here may appear academic, it is important to note that in recent years a vast amount 
of literature has been devoted to squeezing, the reason being an increasing interest in 
the optical detection of very small changes of a given physical quantity, which can be 
converted into a phase or frequency shift. The quantity to be measured is so small 
that the signal is below the quantum noise limit and squeezing is one possible answer. 
The typical examples we are bearing in mind are gravitational wave detection and the 
laser gyroscope. Also, in a series of recent experiments, squeezed states have been 
generated and observed in a non-linear optical system [2]. In the first part of this 
letter, we take Aragone and Zypman's supercoherent states [3] for the supersymmetric 
harmonic oscillator and show that the fermionic sector can be generated with a 
displacement operator, starting from vacuum. This sector can also be squeezed through 
the usual squeezing operator. For the sector orthogonal to the fermionic one, we show 
that the fluctuations of R and p can be reduced via a squeezing operator, but never 
below the quantum limit. The rest of the letter is devoted to the minimum uncertainty 
states (MUS) in search of squeezed and coherent states. 

The Hamiltonian of the supersymmetric harmonic oscillator is given by [4] 

(1) H = l  2 + 1  2 2 1 1 
2p 2~ x - ~ W ( T ~ ' H B - - W ( T ~  

where H B l n ) = ( n + $ ) l n )  and u3 is the third component of the Pauli matrices. The 
eigenstates and the eigenvalues of H are given by 

E ,  = nw n = 1,2,3, .  . . 
(2) 

I+") = a I!")) + DIin-lJ 
M O )  = I!)) Eo=O. 

t Permanent address: Departamento de Fisica, Universidad Sim6n Bolivar, Apartado Postal 80659, Caracas 
1070, Venezuela. 
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It was shown [3] that in this system one can define an annihilation operator: 

A = ( "  O a  ') (3) 

such that 

AI +fl) a I +fl - 1) (4) 
where a is the usual boson operator. The supercoherent states, defined as the eigenstates 
of A, i.e. AIZ) = z ( Z )  are 

la = sol+)+ C l l 9  ( 5 )  

where 

where a, and c1 are constants, Iz) being the standard boson coherent states. Another 
way of writing 12) is as 

la= ~ l Z f ) + P I Z S )  ( 7 a )  

with 

where the bar denotes complex conjugation. The advantage of the form given by 
equation ( 7 b )  is that (zf lzs) = 0. 

As we know, the usual boson coherent states can be obtained as a displaced vacuum, 
with a unitary displacement operator. Our first question is: is there a unitary displace- 
ment operator for the supercoherent states? To answer this question we notice that 
from equations ( 5 )  and ( 6 )  one can write the supercoherent states as 

12) = [ D ( z ) O I I K ( z ) l ! O ?  (8) 
where D( z )  = exp[ za+ - is the usual Glauber displacement operator and 

(ao- c , r / J z )  - c ,a+ /d?  P 
Q 

K ( z )  = (9) 

P and Q being arbitrary boson operators. If we want a unitary operator, that means 
K + ( z ) K ( z )  = 1, which in turn implies 

( p - A a + ) ( D + i a ) P P + =  1 

I A ~ * +  QQ+ = 1 

- ( p + A a + ) i  + PQ+ = 0 

where p = a,+ A.T, and A = - c l / d .  
The set of equations (10) are inconsistent unless A = 0. If A =O, K ( z )  = (! i )  up to 

an irrelevant phase factor. Therefore, the only unitary displacement operator is D( z )  0 
I, that generates a subset of the supercoherent states, namely the fermionic sector. 
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Next, we want to study the squeezing of the supercoherent states. For this purpose, 
we extend the usual definition of creation and annihilation operators: 

a + a @ I  a + + a + @ I  (11) 

and therefore we have a similar extension for 9 = ( l / a ) (  a + a + )  and p* = ( i / a ) (  a +  - a) .  
Aragone and Zypman [3] have shown that the fermionic sector ( l z f ) )  are MUS with 

respect to 9 and c. Also, if we consider the states orthogonal to the fermionic sector 
(Iz,)), these are not MUS with respect to the two quadratures 2 and 6. 

A rather tedious, but straightforward, calculation shows that 

((A3)’)s =f(l+cosh’ r)+isinh’ r+sinh(2r) cos 8 

((AB)’), =$(1+cosh2 r)+isinh’ r-sinh(2r) cos 8 
(12) 

where 

P = s (a )9s+(a)  )7= S(a)p*S+(a) (13) 

(14) 

S(a) is the usual squeezing operator defined as [5]: 
i %  ~ ( a )  = exp[f(aa+’- cia’)] a = r e  

and the subscript s in equation (12) indicates that the averages have been taken with 
respect to the lz,) states. 

From equation (14), it is easy to prove that 

S(a)aS+(a)  = a cosh r+a+e io  sinh r. (15) 

To derive the results given in equation (12), we made use of the above equality (15). 
For r = 0 (no squeezing), we regain the results of [3]. For large r, we get a decrease 

of but the lowest it can get is f. From these results we immediately see that 
the S+(a)Iz , )  states are neither squeezed nor MUS, namely ((AT)),((AB)), is always 
larger than f. 

At this point we would like to focus op a more detailed discussion on the MUS. A 
MUS of two Hermitian operators A and B is given by [6] 

(A+i&I+>=PI+) (16) 

where A is real and positive and P = (A)+iA(i). From equation (16), it is simple to 
prove that 

$e states I+) defined by equation (16) are the minimum uncertainty states for A and 
B. A subset of th5se states, those with A = *1 correspond to the coherent states, for 
which (AA)’= (AB)’. If A # 1, we generate squeezed MUS, where the fluctuation of 
one operator is reduced with respect to the other one, but their product 

(AA)*(A& =+/([A, il)l’ (18) 

still corresponds to minimum uncertainty states. Now, if we specialise to 2 and p* as 
defined at the beginning of this letter, we can write 

(X^+iAp*)l+) = PI+) (19) 
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or 

and if we define 

l + A  A - 1  
sinh r =- 

2 6  
cosh r = - 

2 6  

one can write 

( a  cosh r-a+sinhr)l4)=-1+). P 
m 

From equations (15) and (22), we can i,mmediately see that ( e  = T) 

but since F ( a )  = S ( - a ) ,  then 

and we can write 

where the subscript N refers to the fact that the coherent state is now normalised. 
From equation (24), we can immediately see that the squeezed minimum uncertainty 
states are generated by a unitary squeezing operator S + ( a )  acting on a coherent state. 

These well known results are quoted here because now we want to look at the 
minimum uncertainty states for supersymmetric operators. We would like to define a 
couple of operators X and P with properties different from the diagonal extension 
mentioned before. If we define them diagonal, as well as the squeezing operator, we 
get the result given by equation (12), that is, there is a reduction in the fluctuation of 
one of the quadratures, but not below the quantum noise level (i) and we do not have 
any squeezing. On the other hand, if one defines 14) = 11;;;) and proceeds as outlined 
in equations (19)-(24) with a and a+ diagonal (i.e. a-,(.’ b), a + + ( ! +  ;+)), we can get 
the standard squeezed state for both I+,) and I+*). Now, we have defined A, which is 
a non-diagonal operator that acts as the annihilation operator f:r the sypersymmetric 
harmonic oscillator. We then could define two new operators X and P as 

1 $ = - (A+ - A) 1 
J;i 2 = - (A+ + A) J;i 

which would be the ‘natural’ way of defining 2 and $ in terms of the annihilation 
operator A. 

The next question is: can we find minimum uncertainty states for the operators 2 
and $ which can be either ‘coherent’ or squeezed in the sense of A = 1 or A # 1 
respectively? Notice that coherence here has a different meaning to the Aragone and 
Zipman [3] supercoherent state, since they obtain states that are not MUS (for 2 and 
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6) and are eigenstates of the annihilation operator A. The basic equations for our 
MUS are 

(2+iAfi)l+)= ?I+) 

~ ' ( i  - A ) +  ~ ( i  + A )  
1 u + ( ~ - A ) + u ( ~ + A )  
d2 ( 1 - A  

2 +iA@ =- 

I +) = I I$$. 

I+,)= I$L)). (28) 

cfl= ( n l h )  d,  = (nl*2) (29) 

C, + 6 (1 + A )&Ti + C, - ( 1 - A ) (6 J;; + p) = J Z E ~ C ,  
d,+,( 1 + A )( 6 + p & T i )  + d , - lp (  1 - A)& = d2prdn.  

(27) 
To solve equations (27) for I+), we define basis states which are the eigenstates of the 
supersymmetric harmonic oscilator, namely: 

If we multiply equation (27) by (+,,I, and define 

we get the following recursion relations: 

(30) 
Although the general solution of the system (30) is complex, we discuss some 
simple cases. 

(i) A = 1, p = 0, gives trivially 

) I+), = J ! z = Y / J 2 )  

with an ordinary coherent state in the upper component of I +) . 
(ii) A = 1, a = 0, gives 

I+)II = l i r = y / ~ z ) )  

with an ordinary coherent state in the lower component of I +) . 

in the upper or lower component of I +) respectively. 

straightforward calculation we get 

(iii) In a similar way, A # I and p = 0 or a = 0, will give an ordinary squeezed state 

(iv) A rather interesting case arises when a, p # 0. Take A = 1 ,  a = /3 # 0. In a 

I+J = lz = r / a  coherent state. 

with CO being a normalisation factor given by 
-2 --1/2 

co=[;o(=$2fl(p1+fi)) ] . 

This would be a coherent state in the sense of equal fluctuations for and $. We 
have not been able to solve the case A # 1 and a = p # 0 since the standard technique 
of converting the difference equation into a differential one, via a generating function, 
does not work here, although one can always express c, and d ,  in terms of complicated 
continued fractions?. 

P For a general discussion on the three-term recursion relations, see [7]. 
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It is interesting to note that, as opposed to the ordinary harmonic oscillator, in the 
supersymmetric case, if one forms wA+A, it does not generate the Hamiltonian given 
in equation (1) but rather 

H’ = H ,  -&x~, + o(a+u+ + au-). (31) 

If one performs the transformation u3 + -U,, U, + uT, in this Hamiltonian, all the 
algebraic properties remain unchanged and H’ becames the well known model of 
Jaynes and Cummings [SI, for extremely strong coupling, g = o. This model has been 
widely used in quantum optics to describe the interaction of a two-level atom with 
one mode of the electromagnetic field. It is interesting to note that, although in the 
past this model was considered highly academic, it has been recently verified experi- 
mentally through micromaser experiments [9]. 

References 

[ l ]  Klauder J R and Skagerstam B (ed) 1985 Coherent States: Applications in Physics and Mathematical 

[2] Wu L, Kimble J F, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520 
[3] Aragone C and Zypman F 1986 J. Phys A:  Marh. Gen. 19 2267 
[4] Witten E 1981 Nucl. Phys B 188 513 

[SI Walls D 1983 Nature 306 141 

Physics (Singapore: World Scientific) 

de Crombrugghe M and Rittenberg V 1983 Ann. Phys., N Y  151 99 

Bishop R F and Vourdas A 1986 J. Phys. A:  Math. Gen. 19 2525 
D’Ariano G, Morosi S, Rasetti M, Katriel J and Solomon A I 1987 Phys. Rev. D 36 2399 

[6] Wodkiewitcz K Lecture notes and private communication 
[7] Risken H 1984 The Fokker-Planck Equation (Berlin: Springer) 
[8] Jaynes E T and Cummings F W 1963 h o c .  IEEE 51 89 
[9] Rempe G, Walther H and Klein N 1987 Phys. Rev. Lett. 58 353 


